Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0345123, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651896

RESUMO

The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa, which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic tolerance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro. We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa. Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. IMPORTANCE: Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro, is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.

2.
PLoS One ; 19(2): e0294120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394229

RESUMO

People with muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often have acute or chronic respiratory infections that are difficult to treat due in part to the accumulation of hyperconcentrated mucus within the airway. Mucus accumulation and obstruction promote chronic inflammation and infection and reduce therapeutic efficacy. Bacterial aggregates in the form of biofilms exhibit increased resistance to mechanical stressors from the immune response (e.g., phagocytosis) and chemical treatments including antibiotics. Herein, combination treatments designed to disrupt the mechanical properties of biofilms and potentiate antibiotic efficacy are investigated against mucus-grown Pseudomonas aeruginosa biofilms and optimized to 1) alter biofilm viscoelastic properties, 2) increase mucociliary transport rates, and 3) reduce bacterial viability. A disulfide bond reducing agent (tris(2-carboxyethyl)phosphine, TCEP), a surfactant (NP40), a biopolymer (hyaluronic acid, HA), a DNA degradation enzyme (DNase), and an antibiotic (tobramycin) are tested in various combinations to maximize biofilm disruption. The viscoelastic properties of biofilms are quantified with particle tracking microrheology and transport rates are quantified in a mucociliary transport device comprised of fully differentiated primary human bronchial epithelial cells. The combination of the NP40 with hyaluronic acid and tobramycin was the most effective at increasing mucociliary transport rates, decreasing the viscoelastic properties of mucus, and reducing bacterial viability. Multimechanistic targeting of biofilm infections may ultimately result in improved clinical outcomes, and the results of this study may be translated into future in vivo infection models.


Assuntos
Depuração Mucociliar , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa , Ácido Hialurônico/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Biofilmes
3.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645913

RESUMO

People with muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often have acute or chronic respiratory infections that are difficult to treat due in part to the accumulation of hyperconcentrated mucus within the airway. Mucus accumulation and obstruction promote chronic inflammation and infection and reduce therapeutic efficacy. Bacterial aggregates in the form of biofilms exhibit increased resistance to mechanical stressors from the immune response (e.g., phagocytosis) and chemical treatments including antibiotics. Herein, combination treatments designed to disrupt the mechanical properties of biofilms and potentiate antibiotic efficacy are investigated against mucus-grown Pseudomonas aeruginosa biofilms and optimized to 1) alter biofilm viscoelastic properties, 2) increase mucociliary transport rates, and 3) reduce bacterial viability. A disulfide bond reducing agent (tris(2-carboxyethyl)phosphine, TCEP), a surfactant (NP40), a biopolymer (hyaluronic acid, HA), a DNA degradation enzyme (DNase), and an antibiotic (tobramycin) are tested in various combinations to maximize biofilm disruption. The viscoelastic properties of biofilms are quantified with particle tracking microrheology and transport rates are quantified in a mucociliary transport device comprised of fully differentiated primary human bronchial epithelial cells. The combination of the NP40 with hyaluronic acid and tobramycin was the most effective at increasing mucociliary transport rates, decreasing the viscoelastic properties of mucus, and reducing bacterial viability. Multimechanistic targeting of biofilm infections may ultimately result in improved clinical outcomes, and the results of this study may be translated into future in vivo infection models.

4.
Nucleic Acid Ther ; 33(5): 306-318, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643307

RESUMO

Recent advances in the therapeutic potential of RNA-related treatments, specifically for antisense oligonucleotide (ASO)-based drugs, have led to increased numbers of ASO regulatory approvals. In this study, we focus on SPL84, an inhaled ASO-based drug, developed for the treatment of the pulmonary disease cystic fibrosis (CF). Pulmonary drug delivery is challenging, due to a variety of biological, physical, chemical, and structural barriers, especially when targeting the cell nucleus. The distribution of SPL84 throughout the lungs, penetration into the epithelial cells and nucleus, and structural stability are critical parameters that will impact drug efficacy in a clinical setting. In this study, we demonstrate broad distribution, as well as cell and nucleus penetration of SPL84 in mouse and monkey lungs. In vivo and in vitro studies confirmed the stability of our inhaled drug in CF patient-derived mucus and in lung lysosomal extracts. The mobility of SPL84 through hyperconcentrated mucus was also demonstrated. Our results, supported by a promising preclinical pharmacological effect of full restoration of cystic fibrosis transmembrane conductance regulator channel activity, emphasize the high potential of SPL84 as an effective drug for the treatment of CF patients. In addition, successfully tackling the lung distribution of SPL84 offers immense opportunities for further development of SpliSense's inhaled ASO-based drugs for unmet needs in pulmonary diseases.


Assuntos
Fibrose Cística , Humanos , Camundongos , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Oligonucleotídeos Antissenso/farmacologia , Preparações Farmacêuticas , Oligonucleotídeos/farmacologia , Oligonucleotídeos/uso terapêutico , Pulmão
5.
Biofilm ; 5: 100104, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36711323

RESUMO

The viscoelastic properties of biofilms are correlated with their susceptibility to mechanical and chemical stress, and the airway environment in muco-obstructive pulmonary diseases (MOPD) facilitates robust biofilm formation. Hyperconcentrated, viscoelastic mucus promotes chronic inflammation and infection, resulting in increased mucin and DNA concentrations. The viscoelastic properties of biofilms are regulated by biopolymers, including polysaccharides and DNA, and influence responses to antibiotics and phagocytosis. We hypothesize that targeted modulation of biofilm rheology will compromise structural integrity and increase antibiotic susceptibility and mucociliary transport. We evaluate biofilm rheology on the macro, micro, and nano scale as a function of treatment with a reducing agent, a biopolymer, and/or tobramycin to define the relationship between the viscoelastic properties of biofilms and susceptibility. Disruption of the biofilm architecture is associated with altered macroscopic and microscopic moduli, rapid vector permeability, increased antibiotic susceptibility, and improved mucociliary transport, suggesting that biofilm modulating therapeutics will improve the treatment of chronic respiratory infections in MOPD.

6.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187602

RESUMO

The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa , which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic recalcitrance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro . We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa . Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. Importance: Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro , is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.

7.
mSphere ; 7(4): e0029122, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35968965

RESUMO

The pathological properties of airway mucus in cystic fibrosis (CF) are dictated by mucus concentration and composition, with mucins and DNA being responsible for mucus viscoelastic properties. As CF pulmonary disease progresses, the concentrations of mucins and DNA increase and are associated with increased mucus viscoelasticity and decreased transport. Similarly, the biophysical properties of bacterial biofilms are heavily influenced by the composition of their extracellular polymeric substances (EPS). While the roles of polymer concentration and composition in mucus and biofilm mechanical properties have been evaluated independently, the relationship between mucus concentration and composition and the biophysical properties of biofilms grown therein remains unknown. Pseudomonas aeruginosa biofilms were grown in airway mucus as a function of overall concentration and DNA concentration to mimic healthy, and CF pathophysiology and biophysical properties were evaluated with macro- and microrheology. Biofilms were also characterized after exposure to DNase or DTT to examine the effects of DNA and mucin degradation, respectively. Identifying critical targets in biofilms for disrupting mechanical stability in highly concentrated mucus may lead to the development of efficacious biofilm therapies and ultimately improve CF patient outcomes. Overall mucus concentration was the predominant contributor to biofilm viscoelasticity and both DNA degradation and mucin reduction resulted in compromised biofilm mechanical strength. IMPORTANCE Pathological mucus in cystic fibrosis (CF) is highly concentrated and insufficiently cleared from the airway, causing chronic inflammation and infection. Pseudomonas aeruginosa establishes chronic infection in the form of biofilms within mucus, and this study determined that biofilms formed in more concentrated mucus were more robust and less susceptible to mechanical and chemical challenges compared to biofilms grown in lower concentrated mucus. Neither DNA degradation nor disulfide bond reduction was sufficient to fully degrade biofilms. Mucus rehydration should remain a priority for treating CF pulmonary disease with concomitant multimechanistic biofilm degradation agents and antibiotics to clear chronic infection.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Biofilmes , Fibrose Cística/microbiologia , DNA , Humanos , Mucinas/metabolismo , Muco/metabolismo
8.
Redox Biol ; 39: 101826, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352464

RESUMO

RATIONALE: Inhalation of nitric oxide (NO) exerts selective pulmonary vasodilation. Nitric oxide also has an antimicrobial effect on a broad spectrum of pathogenic viruses, bacteria and fungi. OBJECTIVES: The aim of this study was to investigate the effect of inhaled NO on bacterial burden and disease outcome in a murine model of Klebsiella pneumonia. METHODS: Mice were infected with Klebsiella pneumoniae and inhaled either air alone, air mixed with constant levels of NO (at 80, 160, or 200 parts per million (ppm)) or air intermittently mixed with high dose NO (300 ppm). Forty-eight hours after airway inoculation, the number of viable bacteria in lung, spleen and blood was determined. The extent of infiltration of the lungs by inflammatory cells and the level of myeloperoxidase activity in the lungs were measured. Atomic force microscopy was used to investigate a possible mechanism by which nitric oxide exerts a bactericidal effect. MEASUREMENTS AND MAIN RESULTS: Compared to control animals infected with K. pneumoniae and breathed air alone, intermittent breathing of NO (300 ppm) reduced viable bacterial counts in lung and spleen tissue. Inhaled NO reduced infection-induced lung inflammation and improved overall survival of mice. NO destroyed the cell wall of K. pneumoniae and killed multiple-drug resistant K. pneumoniae in-vitro. CONCLUSIONS: Intermittent administration of high dose NO may be an effective approach to the treatment of pneumonia caused by K. pneumoniae.


Assuntos
Klebsiella pneumoniae , Pneumonia , Animais , Antibacterianos , Modelos Animais de Doenças , Pulmão , Camundongos , Óxido Nítrico
9.
ACS Infect Dis ; 7(1): 23-33, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33291868

RESUMO

Antibiotic resistance in bacteria is a major global threat and a leading cause for healthcare-related morbidity and mortality. Resistant biofilm infections are particularly difficult to treat owing to the protective biofilm matrix, which decreases both antibiotic efficacy and clearance by the host. Novel antimicrobial agents that are capable of eradicating resistant infections are greatly needed to combat the rise of antibiotic-resistant bacteria, particularly in patients with cystic fibrosis who are frequently colonized by multidrug-resistant species. Our research group has developed nitric oxide-releasing biopolymers as alternatives to conventional antibiotics. Here, we show that nitric oxide acts as a broad-spectrum antibacterial agent while also improving the efficacy of conventional antibiotics when delivered sequentially. Alone, nitric oxide kills a broad range of bacteria in planktonic and biofilm form without engendering resistance. In combination with conventional antibiotics, nitric oxide increases bacterial susceptibility to multiple classes of antibiotics and slows the development of antibiotic resistance. We anticipate that the use of nitric oxide in combination with antibiotics may improve the outcome of patients with refractory infections, particularly those that are multidrug-resistant.


Assuntos
Óxido Nítrico , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa
10.
ACS Biomater Sci Eng ; 6(1): 433-441, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-32671191

RESUMO

Nitric oxide (NO) is a broad-spectrum antibacterial agent, making it an attractive alternative to traditional antibiotics for treating infections. To date, a direct comparison of the antibacterial activity of gaseous NO (gNO) versus water-soluble NO-releasing biopolymers has not been reported. In this study, the bactericidal action of NO-releasing chitosan oligosaccharides was compared to gNO treatment against cystic fibrosis-relevant Gram-positive and Gram-negative bacteria. A NO exposure chamber was constructed to enable the dosing of bacteria with gNO at concentrations up to 800 ppm under both aerobic and anaerobic conditions. Bacteria viability, solution properties (i.e., pH, NO concentration), and toxicity to mammalian cells were monitored to ensure a thorough understanding of bactericidal action and reproducibility for each delivery method. The NO-releasing chitosan oligosaccharides required significantly lower NO doses relative to gNO therapy to elicit antibacterial action against Pseudomonas aeruginosa and Staphylococcus aureus under both aerobic and anaerobic conditions. Reduced NO doses required for bacteria eradication using water-soluble NO-releasing chitosan were attributed to the release of NO in solution, removing the need to transfer from gas to liquid phase and the associated long diffusion distances of gNO treatment.


Assuntos
Antibacterianos , Óxido Nítrico , Animais , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Reprodutibilidade dos Testes
11.
ACS Infect Dis ; 6(7): 1940-1950, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32510928

RESUMO

Pseudomonas aeruginosa is the main contributor to the morbidity and mortality of cystic fibrosis (CF) patients. Chronic respiratory infections are rarely eradicated due to protection from CF mucus and the biofilm matrix. The composition of the biofilm matrix determines its viscoelastic properties and affects antibiotic efficacy. Nitric oxide (NO) can both disrupt the physical structure of the biofilm and eradicate interior colonies. The effects of a CF-like growth environment on P. aeruginosa biofilm susceptibility to NO were investigated using parallel plate macrorheology and particle tracking microrheology. Biofilms grown in the presence of mucins and DNA contained greater concentrations of DNA in the matrix and exhibited concomitantly larger viscoelastic moduli compared to those grown in tryptic soy broth. Greater viscoelastic moduli correlated with increased tolerance to tobramycin and colistin. Remarkably, NO-releasing cyclodextrins eradicated all biofilms at the same concentration. The capacity of NO-releasing cyclodextrins to eradicate P. aeruginosa biofilms irrespective of matrix composition suggests that NO-based therapies may be superior antibiofilm treatments compared to conventional antibiotics.


Assuntos
Ciclodextrinas , Pseudomonas aeruginosa , Biofilmes , Humanos , Óxido Nítrico , Tobramicina
12.
J Cyst Fibros ; 19(6): 1004-1010, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32205069

RESUMO

BACKGROUND: The combination of antibacterial and mucolytic actions makes nitric oxide (NO) an attractive dual-action cystic fibrosis (CF) therapeutic. The delivery of any therapeutic agent through pathological mucus is difficult, and the use of inhaled NO gas is inherently limited by toxicity concerns. Herein, we directly compare the ability of NO to eradicate infection and decrease mucus viscoelastic moduli as a function of delivery method (i.e., as a gas or water-soluble chitosan donor). METHODS: To compare bactericidal action in tissue, an ex vivo porcine lung model was infected and treated with either gaseous NO or NO-releasing chitosan for 5 h. In vitro Pseudomonas aeruginosa biofilm viability was quantified after NO treatment. Human bronchial epithelial mucus and CF sputum were exposed to NO and their viscoelastic moduli measured with parallel plate macrorheology. RESULTS: Larger NO concentrations were achieved in solution when delivered by chitosan relative to gas exposure. The bactericidal action in tissue of the NO-releasing chitosan was greater compared to NO gas in the infected tissue model. Chitosan delivery also resulted in improved antibiofilm action and reduced biofilm viability (2-log) while gaseous delivery had no impact at an equivalent dose (~0.8 µmol/mL). At equivalent NO doses, mucus and sputum rheology were significantly reduced after treatment with NO-releasing chitosan with NO gas having no significant effect. CONCLUSIONS: Delivery of NO by chitosan allows for larger in-solution concentrations than achievable via direct gas with superior bactericidal and mucolytic action.


Assuntos
Biofilmes/efeitos dos fármacos , Quitosana/farmacologia , Fibrose Cística/microbiologia , Muco/efeitos dos fármacos , Óxido Nítrico/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/microbiologia , Administração por Inalação , Animais , Humanos , Técnicas In Vitro , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...